Penalized Maximum Likelihood Principle for Choosing Ridge Parameter

نویسنده

  • Minh Ngoc Tran
چکیده

We consider the problem of choosing the ridge parameter. Two penalized maximum likelihood (PML) criteria based on a distribution-free and a datadependent penalty function are proposed. These PML criteria can be considered as “continuous” versions of AIC. A systematic simulation is conducted to compare the suggested criteria to several existing methods. The simulation results strongly support the use of our method. The method is also applied to two real data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrik...

متن کامل

A non-degenerate estimator for hierarchical variance parameters via penalized likelihood estimation

We propose a maximum penalized likelihood approach for estimating group-level variance parameters in mixed or multilevel models, equivalent to estimating variance parameters by their posterior mode, given a weakly informative prior distribution. By choosing the prior from the gamma family with shape parameter greater than 1, we ensure that the estimated variance will be positive. When the maxim...

متن کامل

A Non-degenerate Estimator for Variance Parameters in Multilevel Models via Penalized Likelihood Estimation

In this paper we consider the problem of obtaining zero estimates for group-level variance parameters in multilevel or hierarchical linear models, a problem that occurs frequently when the number of groups or the value of the variance is small. For situations where zero variances are implausible a priori, we propose a maximum penalized likelihood approach to avoid such boundary estimates. This ...

متن کامل

A nondegenerate penalized likelihood estimator for variance parameters in multilevel models.

Group-level variance estimates of zero often arise when fitting multilevel or hierarchical linear models, especially when the number of groups is small. For situations where zero variances are implausible a priori, we propose a maximum penalized likelihood approach to avoid such boundary estimates. This approach is equivalent to estimating variance parameters by their posterior mode, given a we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Communications in Statistics - Simulation and Computation

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2009